Fusion of Heterogeneous Information in Graph-Based Ranking for Query-Biased Summarization
نویسندگان
چکیده
We propose a graph-based ranking method for query-biased summarization in a three-layer graph model consisting of document, sentence and word-layers. The model has a representation that fuses three kinds of heterogeneous information: part-whole relationships between different linguistic units, similarity using the overlap of the Basic Elements (BEs) in the statements, and semantic similarity between words. In an experiment using the text summarization test collection of Nakano et al., our proposed method achieved the best result of the five considered methods, which were based on other graph models with an average R-Precision of 0.338.
منابع مشابه
SentTopic-MultiRank: a Novel Ranking Model for Multi-Document Summarization
Extractive multi-document summarization is mostly treated as a sentence ranking problem. Existing graph-based ranking methods for key-sentence extraction usually attempt to compute a global importance score for each sentence under a single relation. Motivated by the fact that both documents and sentences can be presented by a mixture of semantic topics detected by Latent Dirichlet Allocation (L...
متن کاملQuery-focused Multi-Document Summarization: Combining a Topic Model with Graph-based Semi-supervised Learning
Graph-based learning algorithms have been shown to be an effective approach for query-focused multi-document summarization (MDS). In this paper, we extend the standard graph ranking algorithm by proposing a two-layer (i.e. sentence layer and topic layer) graph-based semi-supervised learning approach based on topic modeling techniques. Experimental results on TAC datasets show that by considerin...
متن کاملAbstractive Summarization of Spoken and Written Conversations Based on Phrasal Queries
We propose a novel abstractive querybased summarization system for conversations, where queries are defined as phrases reflecting a user information needs. We rank and extract the utterances in a conversation based on the overall content and the phrasal query information. We cluster the selected sentences based on their lexical similarity and aggregate the sentences in each cluster by means of ...
متن کاملAn Effective Path-aware Approach for Keyword Search over Data Graphs
Abstract—Keyword Search is known as a user-friendly alternative for structured languages to retrieve information from graph-structured data. Efficient retrieving of relevant answers to a keyword query and effective ranking of these answers according to their relevance are two main challenges in the keyword search over graph-structured data. In this paper, a novel scoring function is proposed, w...
متن کاملQuery-Focused Multi-Document Summarization Using Co-Training Based Semi-Supervised Learning
This paper presents a novel approach to query-focused multi-document summarization. As a good biased summary is expected to keep a balance among query relevance, content salience and information diversity, the approach first makes use of both the content feature and the relationship feature to select a number of sentences via the cotraining based semi-supervised learning, which can identify the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015